Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математическая грамотность
Вариант № 3053
1.  
i

На диа­грам­ме ука­за­ны дан­ные о ко­ли­че­стве книг, про­чи­тан­ных за 1 чет­верть уче­ни­ка­ми 7 клас­са. Сколь­ко уче­ни­ков про­чи­та­ли не менее 3 книг?

1) 4
2) 2
3) 5
4) 6
2.  
i

Hа диа­грам­ме по­ка­зан гра­фик дви­же­ния пе­ше­хо­да и ве­ло­си­пе­ди­ста. По го­ри­зон­та­ли ука­за­ны — время дви­же­ния (ч), по вер­ти­ка­ли — ука­зан путь (км). Из го­ро­да в по­се­лок вышел пе­ше­ход. Спу­стя 2 часа вы­ехал ве­ло­си­пе­дист, ко­то­рый через два часа до­гнал пе­ше­хо­да. Опре­де­ли­те ско­рость сбли­же­ния ве­ло­си­пе­ди­ста с пе­ше­хо­дом.

1) 20 км/ч
2) 10 км/ч
3) 5 км/ч
4) 3 км/ч
3.  
i

В таб­ли­це пред­став­ле­но из­ме­не­ние тем­пе­ра­ту­ры с 6:00 до 15:00 часов. За какое время тем­пе­ра­ту­ра по­вы­си­лась на 7 °С?

 

Время6.009.0012.0015.00
Тем­пе­ра­ту­ра−12 °С−8 °С−5 °С−7 °С
1) за 3 часа
2) за 6 часов
3) за 4 часа
4) за 7 часов
4.  
i

Част­ное двух чисел равно наи­боль­ше­му об­ще­му де­ли­те­лю чисел 12 и 16. Сумма этих чисел равна наи­мень­ше­му об­ще­му крат­но­му чисел 50 и 75. Най­ди­те эти числа.

1) 30 и 122
2) 30 и 120
3) 15 и 75
4) 12 и 60
5.  
i

Пятый член по­сле­до­ва­тель­но­сти 0; 7; 26; 63;... равен

1) 126
2) 124
3) 125
4) 120
6.  
i

На доске за­пи­сан ряд чисел 1; 2; 3; ...; 21. Ка­ко­ва ве­ро­ят­ность того, что на­у­гад вы­бран­ное число ока­жет­ся про­стым?

1)  дробь: чис­ли­тель: 17, зна­ме­на­тель: 21 конец дроби
2)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 21 конец дроби
3)  дробь: чис­ли­тель: 11, зна­ме­на­тель: 21 конец дроби
4)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 21 конец дроби
7.  
i

Наи­мень­шее сред­нее ариф­ме­ти­че­ское имеет ряд чисел ...?

1) 8; 11; 6; 10; 5
2) 17; 4; 23; 11; 6
3) 6; 12; 16; 14; 8
4) 18; 10; 26; 19; 9
8.  
i

Белка с оре­хом бежит со ско­ро­стью 3 м/с, а без ореха со ско­ро­стью 5 м/с Один орех в дупло она при­но­сит за 16 минут. На каком рас­сто­я­нии от дупла на­хо­дят­ся орехи?

1) 1500
2) 1250
3) 1532
4) 1800
9.  
i

Bклад­чик по­ло­жил на не­съем­ный де­по­зит 1000000 тенге. Через 5 лет сумма на де­по­зи­те со­ста­ви­ла 1610510 тенге, тогда став­ка по де­по­зи­ту р % равна

1) 10%
2) 5%
3) 12%
4) 7%
10.  
i

На ри­сун­ке че­ты­ре оди­на­ко­вых пря­мо­уголь­ни­ка со­став­ля­ют пря­мо­уголь­ник ABCD. Пе­ри­метр ABCD равен 70. Най­ди­те пло­щадь од­но­го из оди­на­ко­вых пря­мо­уголь­ни­ков, со­став­ля­ю­щих пря­мо­уголь­ник ABCD.

1) 300
2) 80
3) 75
4) 40
11.  
i

На ри­сун­ке изоб­ра­же­на окруж­ность с цен­тром в точке O и ра­ди­у­сом 2 см. По дан­ным ри­сун­ка най­ди­те длину вы­де­лен­ной линии.

1)  левая круг­лая скоб­ка 4 плюс Пи пра­вая круг­лая скоб­ка см
2)  левая круг­лая скоб­ка 4 плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка см
3)  левая круг­лая скоб­ка 4 плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка см
4)  левая круг­лая скоб­ка 8 плюс 2 Пи пра­вая круг­лая скоб­ка см
12.  
i

Oпре­де­ли­те пло­щадь фи­гу­ры на ри­сун­ке, если пло­щадь 1 клет­ки равна 1 см2.

1) 50 см2
2) 60 см2
3) 30 см2
4) 40 см2
13.  
i

Най­ди­те пло­щадь зе­мель­но­го участ­ка, изоб­ра­жен­но­го на ри­сун­ке.

1) 2020 м2
2) 1525 м2
3) 1875 м2
4) 1150 м2
14.  
i

Паук и муха сидят на про­ти­во­по­лож­ных вер­ши­нах куба (см. рис.). Паук может полз­ти по ребру куба и по диа­го­на­ли грани куба. Чему равно рас­сто­я­ние дви­же­ния паука к мухе по ко­рот­ко­му пути, если пло­щадь по­верх­но­сти куба равна 96 см2 (куб в под­ве­шен­ном со­сто­я­нии)?

1) 3 ко­рень из 3 см
2) 4 левая круг­лая скоб­ка 1 плюс ко­рень из 2 пра­вая круг­лая скоб­ка см
3) 12 ко­рень из 2 см
4) 12 см
15.  
i

Алия долж­на была при­ба­вить 26 к не­ко­то­ро­му числу. Но вме­сто этого она вычла 26 из дан­ною числа и по­лу­чи­ла число (−14). Какое число по­лу­чи­лось бы, если бы Алия не пе­ре­пу­та­ла дей­ствия?

1) 36
2) 28
3) 42
4) 38